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Some new continuity concepts for metric projections are introduced which are
simpler and more general than the usual upper and lower semicontinuity. These
concepts are strong enough to generalize a number of known results yet weak
enough so that now the converses of many of these generalizations are also
valid. In particular, in a large class of normed linear spaces, suns and Chebychev
sets can be characterized by a certain continuity property of their metric pro­
jections.

1. INTRODUCTION

There has been much recent interest in studying various continuity criteria
for the set-valued metric projection onto a set V. Particular interest has
centered around the relationship between these criteria and either the
structure of the set V itself or the geometry of the whole space. (See, for
example, [3], [4], [7], [8], [10], [16], [17], [18], and [21].) In essentially all
of these papers, the concepts of lower semicontinuity (I.s.c.) and/or upper
semicontinuity (u.s.c.) for set-valued mappings (as defined, for example,
in Hahn [12]) played the key role.

In this paper we consider some simpler and more general "radial" con­
tinuity criteria (called ORL, IRL, and ORU continuity). Roughly speaking,
these criteria require that the restriction of the metric projection to certain
prescribed line segments be I.s.c. or u.s.c. We will show that these criteria,
which are formally much weaker than I.s.c. or u.s.c., are still st~ong enough
to generalize a number of known results, and weak enough so that many of
these theorems now have valid converses (which they did not have under the
stronger hypotheses of I.s.c. or u.s.c.).
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In particular, in a large class of spaces: suns are characterized by the ORL
continuity of their metric projections (Corollary 2.4); Chebyshev sets are
characterized by the IRL continuity of their metric projections (Corollary 3.8);
and (in every space), those closed convex sets whose metric projections are
compact-valued are characterized by the ORU continuity of their metric
projections (Corollary 4.7). In what is probably the main result of Section 3,
we prove (Theorem 3.6) the denseness of the set of those points whose set
of best approximations is contained in a convex subset of a sphere. From
this theorem we obtain Corollary 3.8 mentioned above as well as a theorem
of Stechkin [19] which asserts-in a strictly convex space-the denseness of
the set of points having unique best approximations. In Section 5, a set
having both an IRL and ORU continuous metric projection is shown to be
boundedly connected and have a "connected-valued" metric projection
(Theorem 5.1). As a consequence (Corollary 5.4) a result of Wulbert ([23],
[24]) is obtained to the effect that the set of rational functions Rnm[a, b] in
C[a, b] is boundedly connected.

Throughout this paper X will denote a (real or complex) normed linear
space, X* its dual space, and for every x E X and r > 0,

B(x, r) = {y E X: II x - y II < r}, S(x, r) = {y E X: II x - y II = r}.

We sometimes denote the unit sphere S(O, 1) by S(X). If 0 =1= V C X, the
distance from a point x to V, denoted d(x, V), is defined by inf{11 x - v II: v E V}.
The metric projection onto V is the mapping P y which takes each element of X
into its set of best approximations in V, i.e.

Pv(x) = {v EO V: II x - v II = d(x, V)}.

V is called proximinal if Py(x) =1= 0 for every x EO X. V is called Chebyshev
if Py(x) is a single point for each x EO X. V is called a sun if for each x EO X
and v E Py(x), V E Py(v + A(X - v)) for every A~ O. P y is said to be l.s.c.
(resp. u.s.c.) at x if for each open set W with Py(x) () W =1= 0 (resp.
Py(x) C W), there exists a neighborhood U of x such that Py(y) () W =1= 0
(resp. Py(y) C W) for every y E U. The kernel of the metric projection P y
is the set

PV1(0) = {x E X: 0 E Pv(x)}.

The line segment joining the points x and y is the set

[x, y] = {Ax + (1 - A)Y: 0 ,,:;; A ,,:;; I}.

The line segment obtained by excluding the end points of [x, y] is denoted
by (x, y). The convex hull ofa set A is denoted by co(A).
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All other undefined notation or terminology is standard and can be found
in [11].

2. ORL CONTINUITY

The results of this section overlap some of those presented in [9]. For
completeness we have included the results, but omitted the proofs.

Our first generalization of l.s.c. is the following.

DEFINITION 2.1. Let V C X and Xo E X. P y is said to be outer radially
lower (abbrev. ORL) continuous at Xo if for every Vo E Py(xo) and each open
set W with W () Py(xo) =1= 0, there exists a neighborhood U of Xo such that
Py(x) n W =1= 0 for every x in U () {Vo + '\(xo - Vo): ,\ ?' I}. P y is called
ORL continuous if it is ORL continuous at each point.

Remark. It is clear that every l.s.c. metric projection is ORL continuous.
There are examples where the converse is false, however. E.g. in any space
which does not have the property (P) of Brown [10], there exists a (finite­
dimensional) subspace V such that P y is not l.s.c. But from Theorem 2.3
below P y is ORL continuous. It is easy to check that P y is always ORL con­
tinuous on Vas well as each point x where Py(x) = 0. Moreover, if V is a
subspace, then P y is ORL (resp. l.s.c.) if and only if Pv is ORL (resp. l.s.c.)
on Pvl(O).

LEMMA 2.2. Let V C X and Xo E X. The following statements are equivalent.

(l) Pv is 0 RL continuous at Xo •

(2) For each vo , VI E Py(xo) and each € > 0, there exists 8 > 0 such that
Py(x) () B(VI' €) =1= 0 for every x in {vo + '\(xo - vo): 1 ~,\ < 1 + 8}.

(3) For each VO , VI E Py(xo) and each sequence (xn) in {vo + '\(xo - Vo):
,\ ?' I} with X n -+ Xo , d(v l , Py(xn)) -+ 0 (i.e. there exist Vn E Py(xn )

such that Vn -+ VI)'

THEOREM 2.3. Let V C X and consider the following statements.

(1) V is a sun.

(2) P y is ORL continuous.

(3) "Local best approximations are global," i.e. for each x E X, every local
minimum of the function 4">,.(v) = /I v - x lion V is a global minimum.

(4) V is a moon (cl [1] or [9] for the definition).

Then (1) => (2) => (3) => (4).
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Remark. In general, the implications (3) => (2) and (4) => (3) are false.
To see that (3) p. (2), we need only to take V to be the complement of the
open unit ball in the Euclidean plane. In this case, all best approximations are
global but P v is not ORL continuous at the origin. To see that (4) p. (3),
let X be the Euclidean plane and

V = {(g, 7)): mg2 + 7)2 ~ I}.

This set is moon but the point (0, - t) has (0, 1) as a local best approximation
in V which is not a global best approximation.

We call a space X an MS-space if every moon in X is a sun. In such a space
all the conditions of Theorem 2.3 are obviously equivalent. In particular,
we have

COROLLARY 2.4. Let X be an MS-space and vex. Then V is a sun ifand
only ifPv is ORL continuous.

Regarding this corollary, it should be mentioned that a large class of
concrete spaces are MS-spaces. In [1] it was shown in particular that the
MS-spaces include those of type Co(T), the real continuous functions vanishing
at infinity on a locally compact Hausdorff space T, as well as those spaces of
type 11(S). An even larger class of spaces which are MS-spaces was determined
in [9]. On the negative side, no strictly convex space can be an MS-space [I].

It is interesting to compare Corollary 2.4 with a particular consequence
of two results of Vlasov ([21; Theorem 7] and [20; Theorem 13]). These two
results, when specialized to Hilbert space, yield the hard part of the following
theorem (cf. also Asplund [2] for an alternate proof):

THEOREM. A Chebyshev set V in a Hilbert space is a sun (i.e. is convex) if
and only ifPv is continuous.

It is still not known whether every Chebyshev set in a Hilbert space is
convex. In fact, it is apparently unknown whether there exists a Chebyshev
set in any space which is not a sun.1 Finally, we do not know whether Corol­
lary 2.4 is valid in non-MS-Spaces.

3. IRL CONTINUITY

A second generalization of l.s.c. is as follows.

DEFINITION 3.1. Let V C X and Xo E X. P v is said to be inner radially
lower (abbrev. IRL) continuous at Xo if for every Vo E Pv(xo) and each open

1 Added in proof: C. B. Dunham ("Chebychev sets in qo, 1] which are not suns," to
appear in Canadian Math. Bull.) has recently exhibited such an example.



240 BROSOWSKI AND DEUTSCH

set W with W n Pv(xo) oF 0, there exists a neighborhood U of X o such that
Pv(x) n WoF 0 for every x in Un {Vo + A(xo - Vo): 0 ~ A ~ I}. Pv is
called IRL continuous if it is IRL continuous at each point.

Remark. Clearly, each Ls.c. metric projection is IRL continuous. The
same example given in the remark following Definition 2.1 shows, using
Theorem 3.3 below, that there are IRL continuous metric projections which
are not Ls.c. Note that P v is always IRL continuous on Vas well as at each
point x with Pv(x) = 0. When V is a subspace, then Pv is IRL continuous
if and only if it is IRL continuous on Pv\O).

LEMMA 3.2. Let V C X and Xo E X. The following statements are equivalent.

(1) Pv is IRL continuous at X o .

(2) For each Vo, VI in Pv(xo) and each E > 0, there exists S > 0 such that
Pv(x) n B(VI' E) oF 0 for every x in {vo + A(xo - vo): 1 - S < A~ I}.

(3) For each Vo , VI in Pv(xo) and each sequence (xn) in {vo + A(xo - Vo):
o ~ A~ I} with Xn ->- Xo , d(vl , Pv(xn)) ->- 0 (i.e. there exist
Vn E Pv(xn) such that Vn ->- VI)'

Proof (1) => (2) is clear.
(2) => (3). If the result were false, there would exist Vo , VI in Pv(xo) and

a sequence (xn) in{vo+ A(xo-vo): 0 ~ A~ I} withxn ->-Xobutd(vl,Pv(xn)) ~
E > 0 for every n. Choose S > 0 such that Pv(x) n B(vI , E) oF 0 for every x
in {vo + A(xo - vo): 1 - S < A ~ I} = Ra • Then for n sufficiently large,
Xn E Ra so d(vI , Pv(xn)) < E which is a contradiction.

(3) => (1). Suppose (3) holds but (1) fails. Then there exists VoE Pv(xo)
and an open set W with Pv(xo) n W oF 0 such that for every neighborhood
U of Xo there exists an x in Un {Vo + A(xo - Vo): 0 < A < I} such that
Pv(x) n W = 0. Choose VI in Pv(xo) n W. Then for every n there exists
Xn = Vo + An(xo - vo) with 1 - lin < An < 1 such that Pv(xn) n W = 0.
Choose E > 0 such that B(vl , E) C W. Then PV(Xi) n B(vl , E) = 0 for
i = 0, 1,2,... Hence Xn ->- Xo but d(vl , Pv(xn)) ~ E for every n, a contra­
diction.

THEOREM 3.3. If Pv(x) is convex, then Pv is IRL continuous at x.

Proof If Pv(x) = 0, the result is trivially true. Let vo, VI E Pv(x) and
Xn E [x, vol with Xn ->- Xo . Thus Xn = Vo+ (1 - En)(X - vo) where 0 ~ En ~ 1
and En ->- O. Let Vn = (1 - En) VI + EnVo . Then Vn E Pv(x) C V and Vn -+ VI'
Also,

II Xn - Vn II = (1 - En) II X - VI [I = (1 - En) II X - Vo II
= II X n - Vo II = d(xn , V)
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Remark. The converse of Theorem 3.3 is false in general. For example,
taking X to be the plane with the maximum norm and letting V be the two
point set {(l, 0), (1, m, one sees that Py(O) = V is not convex but P y is IRL
continuous at O.

COROLLARY 3.4. If V is convex or a Chebyshev set, then P y is IRL
continuous.

Remark. Neither of the sufficient conditions of Corollary 3.4 are neces­
sary. For example, by letting X denote the plane with the maximum norm, and

it is seen that V is neither convex nor Chebyshev but P y is IRL continuous
(since Py(x) is convex for every x).

It will be useful, for proving some later results, to record the following
fact. If x E SeX), then the minimal (necessarily convex) extremal subset of
SeX) which contains x is given by

E(x) = {v E SeX): x = Av + (1 - A)u for some 0 < A < 1, u E SeX)}

= {v E SeX): II x - AV II = 1 - Afor some 0 < A < I}.

This result is well-known and easy to prove.
As a consequence of this, we can give a brief proof of another useful result

observed by Klee [13]:

LEMMA 3.5. Let v E SeX) and 0 < A < I. Then the set

S = S(O, 1) n S(AV, 1 - A)

is star-shaped relative to v.

Proof Let XES. Then II x - AV II = 1 - A so V E E(x). Since E(x) is
convex, [v, x] C S(O, 1). Also, since v, x, and AV + (1 - A)x are in S(AV, 1 - A),
it follows that [v, x] C S(Av, 1 - A). Hence [v, x] C S.

THEOREM 3.6. Let V C X be proximinal and suppose that every convex
extremal subset ofSeX) isfinite dimensional. Then for each x E X\ V there exists
v E Py(x) such thatforevery y E (v, x), co(Py(y» C S(y, dey, V».Inparticular,
the set

{x E X: co(Pv(x» C Sex, d(x, V»}

is dense in X.
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Proof Let x E XI V. We may assume x = 0 and d(O, V) = 1. Since
SeX) = U {E(x): x E SeX)}, we have

Pv(O) = U [V ('\ E(x)] = U [V ('\ E(v)].
XES(X) VES(X)n V

Order the sets lJ' = {E(v): v E SeX) ('\ V} by containment. If <P is a totally
ordered subset of lJ', set E = U{E(v): E(v) E <P}. Clearly, E is a convex
extremal subset of SeX). Further, since dim E < 00, it follows that E is the
union of only finitely many sets E(v). Thus there exists E(v) E <P such that
E = E(v). By Zorn's lemma lJ' has a maximal element E(vo), Vo E SeX) ('\ V.
Let y = Avo, 0 < A < 1. To complete the proof, it suffices to show that
Py(y) C E(vo)' If not, then there is some VI E Py(y)\E(vo)' Hence II vIII = 1
and

II VI - Avo II = II VI - y II = II Vo - y II = 1 - A

which implies VoE E(v1) and hence E(vo) C E(Vl)' But E(vo) was maximal so
E(v1) = E(vo) and VI E E(vo), a contradiction.

Remark. Theorem 3.6 is false in general without the restriction on the
finite-dimensionality ofthe faces ofSeX). For example, take X = Loo([O, 1], p.)
where p. is Lebesgue measure, and V = SeX). Then V is clearly proximinal.
However, if x E X, II x II < t, there exist V1> V2 E Py(x) such that II l(v1 + v2)11 < 1.
To see this, define, for each n ~ 3, the set

M n = It E [0, 1]: I x(t)1 > II x II - ~l·

Then p.(Mn) > 0 and Mn:J M n+1 for every n, and

00

M == {t E [0, 1]: Ix(t)1 = II x II} = nM n •
3

Clearly, p.(M) = limn p.(Mn). We consider two cases:

Case 1. p.(M) > O.
Then we can choose disjoint sets A, B such that p.(A) > 0, p.(B) > 0, and

A u B = M. Define VI = (sgn x) XA, V2 = (sgn x) XB, where XE denotes
the characteristic function of E. Then II Vi II = 1 and II Vi - x II = 1 - II x II,
i.e. Vi E Py(x), but II tev1 + v2)11 = l.

Case 2. p.(M) = O.
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Define En = Mn\M,,+1 • Then (En) is a disjoint sequence. By passing to
a subsequence, if necessary, we may assume fL(E,,) > 0 for every n. Define

co 1
VI = (sgn x) L (1 - 211) XE~.. '

2

and
co 1

v2 = (sgn x) ~ (1 - 2n + 1)XE~"+l .

Then II Vi II = 1, II Vi - x II = 1 -II x II, i.e. Vi E Py(x), but II t(VI + vJ11 = t·
From Theorem 3.6 we immediately obtain the well-known result of

Stechkin [19]:

COROLLARY 3.7 [19]. Let V be a proximinal subset of a strictly convex
space X. Then the set

{x E X: x has a unique best approximation in V}

is dense in X.

COROLLARY 3.8. Let V be a proximinal subset of a strictly convex space.
Then Pv is IRL continuous ifand only if V is Chebyshev.

Proof. The "if" part follows from Corollary 3.4. Assume P y is IRL
continuous and let x E X\ V. By Theorem 3.6 and the strict convexity of X
there exists v E Pv(x) such that each y E (v, x) has a unique best approximation
(viz. v). IfPy(x) contained some VI =1= v, this would violate the IRL continuity.

One should observe that (the "only if" part of) Corollary 3.8 does not
follow from Corollary 3.7, but that the stronger conclusion of Theorem 3.6
is necessary.

In the special case when P y is Hausdorff continuous (resp. lower semi­
continuous), the "only if" part of Corollary 3.8 had been established by
Blatter, Morris, and Wulbert [4] (resp. Blatter [5]). It is interesting to note
that the converses of their results, however, are not valid. This follows from
the recent example of Kripke [14] of a Chebyshev subspace, having a dis­
continuous metric projection, in a strictly convex reflexive space.

A subset V is called boundedly compact if the intersection of V with each
closed ball is compact.

COROLLARY 3.9. Let X be a strictly convex and smooth Banach space and
V C X be boundedly compact. The following are equivalent.
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(1) P y is l.s.c.

(2) P y is IRL continuous.

(3) V is Chebyshev.

(4) V is convex.

(5) P y is convex-valued.

(6) V is a sun.

This result follows using Corollary 3.8 and the result of Vlasov [20] that
in a smooth Banach space every boundedly compact Chebyshev set is convex.
The equivalence of (1), (3), and (4) had been observed earlier by Blatter,
Morris, and Wulbert [4].

In the important case when X is smooth, the restriction on the finite­
dimensionality of the faces of SeX) in Theorem 3.6 may be dropped.

THEOREM 3.10. Let X be smooth and V C X be proximinal. Let Xo E X\V
and Vo E Py(xo). Thenfor each x E (xo , vo),

co(Py(x» C Sex, d(x, V».

In particular, the set

{x E X: co(Py(x» C sex, d(x, V»}

is dense in X.

Proof Let H v be the unique supporting hyperplane to S(xo , II X o - Vo II)
o

at Vo • Let x E (xo , vo). By Lemma 3.5, the set

S = S(xo , II X o - Vo II) n Sex, II x - Vo II)

is star-shaped about Vo ' Choose any VI E Py(x). Then VI E S and so
[vo , VI] C S. Let H be the unique supporting hyperplane to S(xo , 11 X o - Vo II)
at t(vo + VI)' Then H J [vo , VI] and so H = H v • This shows thato
Py(x) C H vo and hence co(Py(x» C H vo • This completes the proof.

THEOREM 3.11. Let V C x. IfP y is IRL continuous, then

co(Py(x» C Sex, d(x, V» for every x E X.

Proof Let x E X. If Py(x) = 0, the result is trivial. Thus assume
Py(x) =1= 0 and let VI'"'' vn in Py(x), Ai > 0, and L:: Ai = 1. We must show
L:; AiVi E Sex, d(x, V». We proceed by induction in n. For n = 1 the result
is trivial. Assume the result is true for n - 1. We may take x = 0 and
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d(O, V) = 1. Thus we need to show II L; AiVi II = 1, and for this it suffices
to show that II L; AiVi II > 1 - E for every E > 0. Write

n

L AiVi = A1VI + (1 - A1)u,
I

By the induction hypothesis, II u II = 1. By IRL continuity, there exists
S > °such that

for every °< A < 0

(i = 2, , n). Take any °< A< min{e, S} and Yi E B(Vi' E) () PV(i\vl )

(i = 2, , n). Then

IIYil1 = 1,

By the induction step,

II Yi - i\Vi II = 1 - A, II Yi - Vi II < E.

1 n
1 _ i\ Li\iYi E SeQ, 1) () S(i\v1 , 1 - i\) = S.

I 2

Since S is star-shaped relative to VI (Lemma 3.5),

Thus

so IlL:; AiVi II > 1 - E.

In the special case when P v is Hausdorff continuous, Theorem 3.11 was
established by Blatter, Morris, and Wulbert [4]. Morris (oral communication)
gave another proof of their theorem which essentially used only the IRL
continuity of P v . Our only excuse for including our own proof is that it is
brief and direct.

The next result was first established in [6] as a consequence of the main
"intersection theorem" (Satz 12) of that paper. Since it was shown to have
some useful corollaries, and since the proof of the "intersection theorem"
of [6] was quite lengthy, it seems worthwhile to record here a short direct
proof.
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THEOREM 3.12 [6; Satz 13]. Let V be a sun. Then

co(Pv(x)) C S(x, d(x, V)) for every x E X.

Proof Let x E X. If Pv(x) = 0, the result is trivial. Thus assume
Pv(x) =1= 0 and let VI, ..., vn in Pv(x), Ai > 0, L~ Ai = 1. To show L~ AiVi E

S(x, d(x, V)). [Use induction on n]. For n = 1, it is clear. Assume true for
n - 1. Write

n

L AiVi = AIVI + (1 - AI)U,
I

1 n

where u = 1 _ A L AiVi .
I 2

Since V is a sun, VI E PV(VI + .:\(X - VI)) for every A > 1 and so

It follows that Vi E PV(VI + A(x - VI)) for every A > 1 for i = 2,..., n. By the
induction hypothesis, for every A > 1

1 n
U = 1 _ A L \Vi E S(x, II x - VI II) (l S(vI + A(X - VI), AII x - VI II) = SA •

I 2

Since SA is star-shaped relative to VI , we have

n

L AiVi = AIVI + (1 - AI)U in SA C S(X, II x - VI [I).
I

It follows immediately that in a strictly convex space every proximinal sun is
Chebyshev.

4. ORU CONTINUITY

Next we give a generalization of U.S.c.

DEFINITION 4.1. Let V C X and Xo E X. Pv is called outer radially upper
(abbrev. ORU) continuous at Xo if for each Vo E Pv(xo) and each open set
W ~ Pv(xo), there exists a neighborhood U of Xo such that Pv(x) C W for
every x in U (l {vo + .:\(xo - vo): .:\ ~ I}. Pv is called ORU continuous if it
is ORU continuous at each point.

Remark. Clearly, every u.s.c. metric projection is ORU continuous.
Pv is obviously ORU continuous on V and at each point x with Pv(x) = 0.
When V is a subspace, Pv is ORU (resp. u.s.c.) if and only if Pv is ORU
(resp. u.s.c.) on PiNO).
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LEMMA 4.2. Let V C X and Xo E X. Consider the following statements.

(1) P v is ORU continuous at Xo

(2) For each Vo E Pv(xo) and each € > 0 there exists S > 0 such that

sup d(v, Py(xo» < €
VEPv(X)

for every x E {vo + i\(xo - vo): 1 ~ i\ < 1 + S}.

(3) For each Vo E Pv(xo) and each sequence (xn) in {vo + i\(xo - vo): i\ ~ I}
with Xn - xo ,

sup d(v, Py(xo»- 0
VEPV(Xn )

(4) For each Vo E Pv(xo), each sequence (xn) in {vo + i\(xo - vo): i\ ~ I}
with Xn - Xo , and each sequence (vn) with Vn E Pv(xn),

(5) For each Vo E Pv(xo), each sequence (xn) in {vo + i\(xo - vo): i\ ~ I}
with Xn - xo , and each sequence (vn) with Vn E Pv(xn) and Vn - v,
V E Pp(xo).

Then (1) => (2) -¢> (3) -¢> (4) => (5). Moreover, ifPp(xo) is compact, (4) => (1)
and the first four statements are equivalent. If V is compact, then (5) => (1)
and all five statements are equivalent.

Proof (1) => (2). Choose Vo E Pv(xo) and let

W = u {B(v, €/2): v E Pv(xo)} :) Pv(xo).

Then there exists a 8 > 0 such that Pv(x) C Wfor every x E {vo + i\(xo - vo):
1 <; i\ < 1 + 8}. Let x E {vo + i\(xo - vo): 1 ~ i\ < 1 + S} and v E Pv(x).
Then there exists v' E Pp(xo) such that II v' - v II < €/2 and so d(v, Pv(xo»<
€/2. It follows that

sup{d(v, Pv(xo»: v E Pv(x)} ~ €/2 < €

The proofs of the implications (2) => (3) -¢> (4) => (5) are routine.
Next assume that Pv(xo) is compact. If (4) holds but (1) fails then there is

an open set W:) Pv(xo) such that for every n there is an Xn E {vo + i\(xo - vo):
1 ~ i\ < 1 + I/n} such that PV(xn)\W =1= 0. Choose VnEPV(Xn)\W. Then
Xn - Xo so d(vn , Pv(xo» - O. Choose Yn E Pv(xo) such that II Vn - Yn 1/- O.
By passing to a subsequence we may assume Yn - Yo, Yo E Pv(xo). Hence
Vn - Yo also. Since Yo E W is open, Vn E W for n large. But this is a contra­
diction.
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Finally, let V be compact. If (5) holds but (I) fails, then a similar argument
yields a contradiction.

Remark. In general, the implications (4) =;- (1) and (5) =;- (1) are false.
The following example invalidates both implications. Let V be the subset of
the Euclidean plane defined by

V= {(g,~):g? I}u{(g,~):g ~ -I}

u {(g, 7]): t g I < 1,7] ? V!=12}\{(1, 0), (-1, O)}.

Taking Xo = (0, 0), we have

Then (4), and hence (5), is satisfied. However, taking Vo = (0, 1) E Pv(xo)
and W = {(g, 7]): 7] > O}, W is open and W':J Pv(xo). Now every x =
(g,7]) in the set {vo + ,\(xo - vo): ,\ > I} has the property that 7] < 0 and

Pv(x) = {(I, ~), (-1, ~)}

so P,,(x) n W = 0. Thus Pv is not ORU continuous at Xo •

LEMMA 4.3. If V is closed, then (5) of Lemma 4.2 holds.

Proof Let Vo E Pv(xo), X n E {Vo + '\(XO - Vo):'\ :)0 I}, X n -+ X O' Vn E PV(xn),

and Vn -+ v. Then v E V and

[I Xo - v II OS;; II Xo - X n II + II X n - Vn II + II Vn - v II
= II Xo - X n II + d(xn , V) + II Vn - v II
-+ d(xo, V),

i.e. II X o - v II OS;; d(xo, V) so VE Pv(xo)·

THEOREM 4.4. Let V C X be a closed set and suppose Pv(x) is convex for
each x. IfPv is ORU continuous, then Pv(x) is compact for each x.

Proof If not, there exists Xo E X\ V and a sequence (Yn) in Pv(xo) which
has no accumulation point. We may assume, by translating, that Yl = O.
Also, by passing to a subsequence if necessary, we may assume II Yn II ? €

for every n :)0 2, and some 0 < € < 1. Choose 0 < 7] < min{l, €/(211 XOII)}.
Then 0 E PV(7]xo) and
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Also, 1JYn E Pv(1Jxo) for every n. Further, the sequence (7JYn) has no accumula­
tion point since (Yn) does not. Define, for each n ;? 2,

Then An ;? 1. If 0 < A < An, then by the convexity of Pv(1JXo), A1JYn =
Any" + (I - A) . 0 E Pv(7Jxo). Since Pv(1JXo) is closed, An1JYn E Pv(1JXo)'
Clearly, [en + l)jn] An1JYn ¢ Pv(7JXo) for each nand ([(n + l)jnJ An1JYn) has
no accumulation point since [en + l)jnJ An :;;: I. Since

it follows that [en + l)jn] An1J < I for each n. Since [0, Yn] C Pv(xo) for each
n, we have [en + l)jn] An7JY" E Pv(xo) C V. Hence, from the relation

II
n + 1 n + 1 II n + I-n-1Jxo - -n- An1JY" = -n-ll7Jxo - An1JYn II

n+ 1 (n + 1 )= -n-ll7Jxoll = d -n-1JXo, V,

it follows that [en + l)jn] An7JYn E Pv«n + Ijn) '1]Xo). Let

\
~ In + 1 I

W = V ~21-n-A"1JYnl'

Then Wis open and W:J Pv(7JXo)' By ORU continuity, Pv([(n + l)jn] 1Jxo)CW
for n sufficiently large. But this contradicts the fact that [en + I)jn] An7]Yn 1= W
for every n.

Singer [I 8] had recently proved Theorem 4.4 in the particular case when V
is a subspace and Pv is u.s.c. The proof given above is a refinement of his
proof.

A close inspection of the proof of Theorem 4.4 reveals that it is not
necessary that Pv(x) be convex for each x but only that each of these sets be
star-shaped.

Remark. The theorem is false in general if Pv is not star-shaped-valued.
For example, taking X = /2 and V = X\B(O, I), then Pv is u.s.c. (hence
ORU continuous), but Pv(O) = SeX) is not compact.

There is a "converse" to Theorem 4.4.

THEOREM 4.5. Let V be a sun such that Pv(x) is compact for every,,· E X.
Then Pv is ORU continuous.
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Proof Fix an arbitrary Xo E X and Vo E Py(xo). Let

i.e. X n -+ X o ' We need the following.

LEMMA. If V is a sun and (xn ) is as above, then Py(xo) = n~ Py(xn).

Proofof Lemma. Let v E P y(xo). Then for each n,

II Xn - v II :S;; ]1 Xn - XO II + II Xo - v II
= II Xn - Xo II + II XO - Vo /I = /I Xn - Vo If
= d(xn , V)

so V E Py(xn) and Py(xo) C n~ Pv(xn).

Conversely, if v E n~ PV(xn ), then II Xn - v II = d(xn , V) for each n
implies /I Xo - v II = d(xo , V) so V E Pv(xo). This proves the lemma.

Now let W be an open set with W:) Py(xo). Since Py(xo) = n~ Py(xn)

and Py(xn) is a decreasing sequence of compact sets, there is an integer N
such that Py(xn) C W for all n ? N. Thus, for some S > 0,

for all x E {vo + A(Xo - vol: 1 :S;; A < I + S}.

It follows that there is a neighborhood U of Xo such that ifx = Vo+ A(Xo - vo),
A ? I, and x E U, then 1 :S;; A < 1 + S. Hence Py is ORU continuous at Xo'

COROLLARY 4.6. If V is a Chebyshev sun, then P v is ORU continuous.

Combining Theorems 4.4 and 4.5 we obtain:

COROLLARY 4.7. Let V be a closed sun with Py(x) convex for each x.
Then P y is ORU continuous ifand only ifPy(x) is compact for every x.

Remark. It is worth noticing that Corollary 4.7 is false with U.S.c. in place
of ORU continuity even if V is a subspace. This follows since there exist
Chebyshev subspaces with discontinuous metric projections. (The first such
example was given by J. Lindenstrauss [15; pp. 87-88]).

There is one case where u.s.c. and ORU continuity coincide.

COROLLARY 4.8. Let Vbeaclosedhyperplane. Thefollowingareequivalent.

(1) P y is U.S.c.

(2) P y is ORU continuous

(3) Py(x) is compact for every x.
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The implications (1) => (2) => (3) follow from above while the implication
(3) => (1) is a result of Singer [18].

5. IRL AND ORU CONTINUITY

DEFINITION. A subset V of X is called boundedly connected if V n B(x, r)
is connected for every x E X and r > O.

This concept was introduced by Wulbert [24]. Observe that every bound~

edly connected set is connected, but not conversely in general.

THEOREM 5.1. Let V be a proximinal set such that P v is both IRL and ORU
continuous. Then V is boundedly connected and Pv(x) is connected for each x.

Proof If V were not boundedly connected, there would exist Xo E X and
r > 0 such that B(xo, r) n V is not connected. We may assume Xo = O.
Thus B(O, r) n V = Au B, where A and Bare nonempty disjoint sets which
are open in V. Clearly, Pv(O) C Au B. We may assume Pv(O) n A =I=- 0.
Lety E B. Then there is a'\o E (0,1) such that for every'\ E ['\0' 1], Pv('\Y) C B.
Let

jj = inf{'\ E [0, 1]: Pv('\Y) C B}.

We first note that Pv(jjy) C B. For if not, then Pv(jjy) n A =I=- 0. Choose
Vo E Pv(jjy) n A. For any sequence X n E (jjy, y) such that X n -+ jjy, there
exists (by IRL continuity) Vn E Pv(xn) C B such that Vn -+ Vo E A. But this
is impossible since A is open in V and Vn E B\A for every n. Thus Pv(jjy) C B.

On the other hand, since Pv is ORU continuous, it follows that there exists
E > 0 such that Pv('\Y) C B for every ,\ E (jj - E, jj). But this contradicts the
definition of jj and proves that V is boundedly connected.

The proof that Pv(x) is connected for each x is virtually the same.

Remark. In the particular case when P v is l.s.c., u.s.c., and Pv(x) is
compact for every x, Theorem 5.1 was established by Blatter, Morris, and
Wulbert [4]. Pollul [I7a] proved Theorem 5.1 in the particular case when P v
is both l.s.c. and u.s.c. The proof above is an obvious modification ofPollul's
proof.

COROLLARY 5.2. Let V be a Chebyshev set such that Pv is ORU continuous.
Then V is boundedly connected.

Proof By Corollary 3.4, every Chebyshev set has IRL continuous metric
projection.

COROLLARY 5.3. Let V be a Chebyshev sun. Then V is boundedly connected.
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Proof By Theorem 4.5, every Chebyshev sun has an ORU continuous
metric projection.

COROLLARY 5.4 (Wulbert [23], [24]). The set of rational functions
R nmea, b] in qa, b] is boundedly connected.

Proof It is well-known that Rnm[a, b] is a Chebyshev sun.

Remark. From the results of this paper, it follows that each Chebyshev
subspace Vhas a metric projection which is ORL, IRL, and ORU continuous.
However, Pv may still be discontinuous.

Some Open Questions. The following questions arose naturally during
this study. Let V C Xbe proximinal and Pv be ORL continuous.

(1) Must Pv be IRL continuous?

(2) Must V be a sun?

(3) Must {x E X: co(Pv(x» C Sex, d(x, V»} be dense in X?

We conjecture that the answer to each of these questions is negative. Note
however that an affirmative answer to (2) in the case when X is a Hilbert space
would have interesting consequences with regard to the convexity of
Chebyshev sets. In particular, we could conclude that a Chebyshev subset V
of a Hilbert space is convex and only if Pv is ORL continuous.2

Note Added in Proof A preliminary preprint of this paper, with the same title, was
GWDG-Bericht Nr. 3, Gottingen, Jan. 1972. Also, an announcement of some of these
results appeared as "Some new continuity concepts for metric projections," in Bull. Amer.
Math. Soc. 78 (1972), 974-978.
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